
Extending X for Double-Buffering, Multi-Buffering, and Stereo

Jeffre yFriedberg
Larry Seiler
Jeff Vroom

Version 3.3
January 11, 1990

TheMulti-Buffering extension described here was a draft standard of the
X Consortium prior to Release 6.1. It has been superseded by the Double Buffer

Extension (DBE). DBE is an X Consortium Standard as of Release 6.1.

Introduction

Several proposals have been written that address some of the issues surrounding the support of double-
buffered, multi-buffered, and stereo windows in the X Window System:

• Extending X for Double-Buffering,Jeffrey Friedberg, Larry Seiler, Randi Rost.

• (Proposal for) Double-Buffering Extensions, Jeff Vroom.

• An Extension to X.11 for Displays with Multiple Buffers,David S.H. Rosenthal.

• A Multiple Buffering/Stereo Proposal, Mark Patrick.

The authors of this proposal have tried to unify the above documents to yield a proposal that incorporates
support for double-buffering, multi-buffering, and stereo in a way that is acceptable to all concerned.

Goals

Clients should be able to:

• Associate multiple buffers with a window.

Copyright © 1989 Digital Equipment Corporation.
Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice and this permission notice appear in all copies. Digital Equip-
ment Corporation makes no representations about the suitability for any purpose of the information in this docu-
ment. Thisdocumentation is provided "as is" without express or implied warranty. This document is subject to
change.

Copyright © 1989, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated doc-
umentation files (the ‘‘Software’’), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to per-
mit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of
the Software.

THE SOFTWARE IS PROVIDED ‘‘A S IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from the X Consor-
tium.

X Window Systemis a trademark of X Consortium, Inc.

-2-

• Paint in any buffer associated with a window.

• Display any buffer associated with a window.

• Display a series of buffers in a window in rapid succession to achieve asmoothanimation.

• Request simultaneous display of different buffers in different windows.

In addition, the extension should:

• Allow existing X applications to run unchanged.

• Support a range of implementation methods that can capitalize on existing hardware features.

-3-

Image Buffers

Normal windows are created using the standardCreateWindow request:

CreateWindow
parent :WINDOW
w_id : WINDOW
depth :CARD8
visual :VISUALID or CopyFromParent
x, y : INT16
width, height : INT16
border_width :INT16
value_mask :BITMASK
value_list :LISTofVALUE

This request allocates a set of window attributes and a buffer into which an image can be drawn. Thecon-
tents of thisimage bufferwill be displayed when the window is mapped to the screen.

To support double-buffering and multi-buffering, we introduce the notion that additional image buffers can
be created and bound together to form groups. The following rules will apply:

• All image buffers in a group will have the same visual type, depth, and geometry (ie: width and
height).

• Only one image buffer per group can be displayed at a time.

• Draw operations can occur to any image buffer at any time.

• Window management requests (MapWindow , DestroyWindow, ConfigureWindow, etc...) affect
all image buffers associated with a window.

• Appropriate resize and exposure events will be generated for every image buffer that is affected by a
window management operation.

By allowing draw operations to occur on any image buffer at any time, a client could, on a multi-threaded
multi-processor server, simultaneously build up images for display. To support this, each buffer must have
its own resource ID. Since buffers are different than windows and pixmaps (buffers are not hierarchical and
pixmaps cannot be displayed) a new resource,Buffer , is introduced. Furthermore,aBuffer is also a
Drawable, thus draw operations may also be performed on buffers simply by passing a buffer ID to the
existing pixmap/window interface.

To allow existing X applications to work unchanged, we assume a window ID passed in a draw request, for
a multi-buffered window, will be analias for the ID of the currently displayed image buffer. Any draw
requests (eq:GetImage) on the window will be relative to the displayed image buffer.

In window management requests, only a window ID will be accepted. Requests likeQueryTree, will con-
tinue to return only window ID’s. Mostev ents will return just the window ID. Somenew events, described
in a subsequent section, will return a buffer ID.

When a window has backing store the contents of the window are saved off -screen. Likewise, when the
contents of an image buffer of a multi-buffer window is sav ed off -screen, it is said to have backing store.
This applies to all image buffers, whether or not they are selected for display.

In some multi-buffer implementations, undisplayed buffers might be implemented using pixmaps. Since
the contents of pixmaps exist off-screen and are not affected by occlusion, these image buffers in effect
have backing store.

On the other hand, both the displayed and undisplayed image buffers might be implemented using a subset
of the on-screen pixels. Inthis case, unless the contents of an image buffer are saved off -screen, these
image buffers in effect do not have backing store.

Output to any image buffer of an unmapped multi-buffered window that does not have backing store is dis-
carded. Outputto any image buffer of a mapped multi-buffer window will be performed; however, portions
of an image buffer may be occluded or clipped.

-4-

When an unmapped multi-buffered window becomes mapped, the contents of any image buffer buffer that
did not have backing store is tiled with the background and zero or more exposure events are generated. If
no background is defined for the window, then the screen contents are not altered and the contents of any
undisplayed image buffers are undefined. If backing store was maintained for an image buffer, then no
exposure events are generated.

New Requests

The new request,CreateImageBuffers, creates a group of image buffers and associates them with a normal
X window:

CreateImageBuffers
w_id : WINDOW
buffers :LISTofBUFFER
update_action :{Undefined,Background,Untouched,Copied}
update_hint :{Frequent,Intermittent,Static}
=>
number_buffers : CARD16

(Errors: Window, IDChoice, Value)

One image buffer will be associated with each ID passed inbuffers. The first buffer of the list is referred to
as buffer[0], the next buffer[1], and so on. Each buffer will have the same visual type and geometry as the
window. Buffer[0] will refer to the image buffer already associated with the window ID and its contents
will not be modified. The displayed image buffer attribute is set to buffer[0].

Image buffers for the remaining ID’s (buffer[1],...) are allocated. If the window is mapped, or if these
image buffers have backing store, their contents will be tiled with the window background (if no back-
ground is defined, the buffer contents are undefined), and zero or more expose events will be generated for
each of these buffers. Thecontents of an image buffer is undefined when the window is unmapped and the
buffer does not have backing store.

If the window already has a group of image buffers associated with it (ie: from a previousCreateImage-
Buffers request) the actions described forDestroyImageBuffersare performed first (this will delete the
association of the previous buffer ID’s and their buffers as well as de-allocate all buffers except for the one
already associated with the window ID).

To allow a server implementation to efficiently allocate the buffers, the total number of buffers required and
the update action (how they will behave during an update) is specified "up front" in the request. If the
server cannot allocate all the buffers requested, the total number of buffers actually allocated will be
returned. NoAlloc errors will be generated − buffer[0] can always be associated with the existing dis-
played image buffer.

For example, an application that wants to animate a short movie loop may request 64 image buffers. The
server may only be able to support 16 image buffers of this type, size, and depth. The application can then
decide 16 buffers is sufficient and may truncate the movie loop, or it may decide it really needs 64 and will
free the buffers and complain to the user.

One might be tempted to provide a request that inquires whethern buffers of a particular type, size, and
depthcouldbe allocated. But if the query is decoupled from the actual allocation, another client could
sneak in and take the buffers before the original client has allocated them.

While any buffer of a group can be selected for display, some applications may display buffers in a pre-
dictable order (ie: the movie loop application). Thelist order (buffer[0], buffer[1], ...) will be used as a hint
by the server as to which buffer will be displayed next. A client displaying buffers in this order may see a
performance improvement.

update_actionindicates what should happen to a previously displayed buffer when a different buffer
becomes displayed. Possible actions are:

Undefined The contents of the buffer that was last displayed will become undefined after the update.
This is the most efficient action since it allows the implementation to trash the contents

-5-

of the buffer if it needs to.

Background The contents of the buffer that was last displayed will be set to the background of the
window after the update. The background action allows devices to use a fast clear capa-
bility during an update.

Untouched The contents of the buffer that was last displayed will be untouched after the update.
Used primarily when cycling through images that have already been drawn.

Copied The contents of the buffer that was last displayed will become the same as those that are
being displayed after the update. This is useful when incrementally adding to an image.

update_hintindicates how often the client will request a different buffer to be displayed. This hint will
allow smart server implementations to choose the most efficient means to support a multi-buffered window
based on the current need of the application (dumb implementations may choose to ignore this hint). Possi-
ble hints are:

Fr equent An animation or movie loop is being attempted and the fastest, most efficient means for
multi-buffering should be employed.

Intermittent The displayed image will be changed every so often. This is common for images that
are displayed at a rate slower than a second.For example, a clock that is updated only
once a minute.

Static The displayed image buffer will not be changed any time soon.Typically set by an
application whenever there is a pause in the animation.

To display an image buffer the following request can be used:

DisplayImageBuffers
buffers :LISTofBUFFER
min_delay :CARD16
max_delay :CARD16

(Errors: Buffer, Match)

The image buffers listed will become displayed as simultaneously as possible and the update action, bound
atCreateImageBufferstime, will be performed.

A l ist of buffers is specified to allow the server to efficiently change the display of more than one window at
a time (ie: when a global screen swap method is used). Attempting to simultaneously display multiple
image buffers from the same window is an error (Match) since it violates the rule that only one image
buffer per group can be displayed at a time.

If a specified buffer is already displayed, any delays and update action will still be performed for that
buffer. In this instance, only the update action ofBackground(and possiblyUndefined) will have any affect
on the contents of the displayed buffer. These semantics allow an animation application to successfully
execute even when there is only a single buffer available for a window.

When aDisplayImageBuffersrequest is made to an unmapped multi-buffered window, the effect of the
update action depends on whether the image buffers involved have backing store. When the target of the
update action is an image buffer that does not have backing store, output is discarded. When the target
image buffer does have backing store, the update is performed; however, when the source of the update is
an image buffer does not have backing store (as in the case of update actionCopied), the contents of target
image buffer will become undefined.

min_delayandmax_delayput a bound on how long the server should wait before processing the display
request. For each of the windows to be updated by this request, at leastmin_delaymilli-seconds should
elapse since the last time any of the windows were updated; conversely, no window should have to wait
more thanmax_delaymilli-seconds before being updated.

min_delayallows an application toslow downan animation or movie loop so that it appears synchronized
at a rate the server can support given the current load.For example, amin_delayof 100 indicates the server
should wait at least 1/10 of a second since the last time any of the windows were updated. Amin_delayof
zero indicates no waiting is necessary.

-6-

max_delaycan be thought of as an additional delay beyondmin_delaythe server is allowed to wait to facili-
tate such things as efficient update of multiple windows. If max_delaywould require an update before
min_delayis satisfied, then the server should process the display request as soon as themin_delayrequire-
ment is met.A typical value formax_delayis zero.

To implement the above functionality, the time since the last update by aDisplayImageBuffersrequest for
each multi-buffered window needs to be saved as state by the server. The server may delay execution of the
DisplayImageBuffersrequest until the appropriate time (e.g. by requeuing the request after computing the
timeout); however, the entire request must be processed in one operation. Request execution indivisibility
must be maintained. When a server is implemented with internal concurrency, the extension must adhere to
the same concurrency semantics as those defined for the core protocol.

To explicitly clear a rectangular area of an image buffer to the window background, the following request
can be used:

ClearImageBufferArea
buffer :BUFFER
x, y : INT16
w, h : CARD16
exposures :BOOL

(Errors: Buffer, Value)

Like the XClearArea request,x andy are relative to the window’s origin and specify the upper-left corner
of the rectangle. Ifwidth is zero, it is replaced with the current window width minusx. If heightis zero it
is replaced with the current window height minusy. If the window has a defined background tile, the rec-
tangle is tiled with a plane mask of all ones, a function ofCopy, and a subwindow-mode ofClipByChildren.
If the window has backgroundNone, the contents of the buffer are not changed. In either case, ifexposures
is true, then one or more exposure events are generated for regions of the rectangle that are either visible or
are being retained in backing store.

The group of image buffers allocated by aCreateImageBuffersrequest can be destroyed with the follow-
ing request:

DestroyImageBuffers
w_id : WINDOW

(Error: Window)

The association between the buffer ID’s and their corresponding image buffers are deleted. Any image
buffers not selected for display are de-allocated. If the window is not multi-buffered, the request is ignored.

Attributes

The following attributes will be associated with each window that is multi-buffered:

displayed_buffer : CARD16
update_action :{Undefined,Background,Untouched,Copied}
update_hint :{Frequent,Intermittent,Static}
window_mode :{Mono,Stereo}
buffers :LISTofBUFFER

displayed_bufferis set to theindexof the currently displayed image buffer (for stereo windows, this will be
the index of the left buffer − the index of the right buffer is simplyindex+1). window_modeindicates
whether this window is Monoor Stereo. The ID for each buffer associated with the window is recorded in
thebuffers list. Theabove attributes can be queried with the following request:

-7-

GetMultiBufferAttributes
w_id : WINDOW
=>
displayed_buffer : CARD16
update_action :{Undefined,Background,Untouched,Copied}
update_hint :{Frequent,Intermittent,Static}
window_mode :{Mono,Stereo}
buffers :LISTofBUFFER

(Errors: Window, Access, Value)

If the window is not multi-buffered, aAccesserror will be generated. The only multi-buffer attribute that
can be explicitly set isupdate_hint. Rather than have a specific request to set this attribute, a generic set
request is provided to allow for future expansion:

SetMultiBufferAttributes
w_id : WINDOW
value_mask :BITMASK
value_list :LISTofVALUE

(Errors: Window, Match, Value)

If the window is not multi-buffered, aMatch error will be generated. The following attributes are main-
tained for each buffer of a multi-buffered window:

window : WINDOW
ev ent_mask :SETofEVENT
index : CARD16
side :{Mono,Left,Right}

windowindicates the window this buffer is associated with.event_maskspecifies which events, relevant to
buffers, will be sent back to the client via the associated buffer ID (initially no events are selected).indexis
the list position (0, 1, ...) of the buffer.sideindicates whether this buffer is associated with the left side or
right side of a stereo window. For non-stereo windows, this attribute will be set toMono. These attributes
can be queried with the following request:

GetBufferAttributes
buffer :BUFFER
=>
window : WINDOW
ev ent_mask :SETofEVENT
index : CARD16
side :{Mono,Left,Right}

(Errors: Buffer, Value)

The only buffer attribute that can be explicitly set isevent_mask. The only events that are valid areExpose
and the newClobberNotify andUpdateNotify ev ent (see Events section below). A Value error will be
generated if an event not selectable for a buffer is specified in an event mask. Rather than have a specific
request to set this attribute, a generic set request is provided to allow for future expansion:

-8-

SetBufferAttributes
buffer :BUFFER
value_mask :BITMASK
value_list :LISTofVALUE

(Errors: Buffer, Value)

Clients may want to query the server about basic multi-buffer and stereo capability on a per screen basis.
The following request returns a large list of information that would most likely be read once by Xlib for
each screen, and used as a data base for other Xlib queries:

GetBufferInfo
root :WINDOW
=>
info : LISTofSCREEN_INFO

WhereSCREEN_INFO andBUFFER_INFO are defined as:

SCREEN_INFO :[normal_info : LISTofBUFFER_INFO,
stereo_info : LISTofBUFFER_INFO]

BUFFER_INFO :[visual :VISUALID,
max_buffers : CARD16,
depth :CARD8]

Information regarding multi-buffering of normal (mono) windows is returned in thenormal_infolist. The
stereo_infolist contains information about stereo windows. If thestereo_infolist is empty, stereo windows
are not supported on the screen. Ifmax_buffersis zero, the maximum number of buffers for the depth and
visual is a function of the size of the created window and current memory limitations.

The following request returns the major and minor version numbers of this extension:

GetBufferVersion
=>
major_number :CARD8
minor_number :CARD8

The version numbers are an escape hatch in case future revisions of the protocol are necessary. In general,
the major version would increment for incompatible changes, and the minor version would increment for
small upward compatible changes. Barring changes, the major version will be 1, and the minor version will
be 1.

Events

All events normally generated for single-buffered windows are also generated for multi-buffered windows.
Most of these events (ie:ConfigureNotify) will only be generated for the window and not for each buffer.
These events will return a window ID.

Exposeev ents will be generated for both the window and any buffer affected. Whenthis event is generated
for a buffer, the same event structure will be used but a buffer ID is returned instead of a window ID.
Clients, when processing these events, will know whether an ID returned in an event structure is for a win-
dow or a buffer by comparing the returned ID to the ones returned when the window and buffer were cre-
ated.

GraphicsExposureandNoExposureare generated using whatever ID is specified in the graphics opera-
tion. If a window ID is specified, the event will contain the window ID. If a buffer ID is specified, the
ev ent will contain the buffer ID.

-9-

In some implementations, moving a window over a multi-buffered window may cause one or more of its
buffers to get overwritten or become unwritable.To allow a client drawing into one of these buffers the
opportunity to stop drawing until some portion of the buffer is writable, the following event is added:

ClobberNotify
buffer : BUFFER
state :{Unclobbered,PartiallyClobbered,FullyClobbered}

TheClobberNotify ev ent is reported to clients selectingClobberNotifyon a buffer. When a buffer that was
fully or partially clobbered becomes unclobbered, an event with Unclobberedis generated. When a buffer
that was unclobbered becomes partially clobbered, an event with PartiallyClobberedis generated. When a
buffer that was unclobbered or partially clobbered becomes fully clobbered, an event with FullyClobbered
is generated.

ClobberNotify ev ents on a given buffer are generated before anyExposeev ents on that buffer, but it is not
required that allClobberNotify ev ents on all buffers be generated before allExposeev ents on all buffers.

The ordering ofClobberNotify ev ents with respect toVisibilityNotify ev ents is not constrained.

If multiple buffers were used as an image FIFO between an image server and the X display server, then the
FIFO manager would like to know when a buffer that was previously displayed, has been undisplayed and
updated, as the side effect of aDisplayImageBuffersrequest. Thisallows the FIFO manager to load up a
future frame as soon as a buffer becomes available. To support this, the following event is added:

UpdateNotify
buffer : BUFFER

TheUpdateNotify ev ent is reported to clients selectingUpdateNotifyon a buffer. Whenever a buffer
becomesupdated(e.g. its update action is performed as part of aDisplayImageBuffersrequest), an
UpdateNotify ev ent is generated.

Errors

The following error type has been added to support this extension:

Buffer A value for a BUFFER argument does not name a defined BUFFER.

-10-

Double-Buffering Normal Windows

The following pseudo-code fragment illustrates how to create and display a double-buffered image:

/*
* Create a normal window
*/
CreateWindow(W, ...)

/*
* Create two image buffers. Assumeafter display, buffer
* contents become "undefined". Assume we will "frequently"
* update the display. Abort if we don’t get two buffers,
*/
n = CreateImageBuffers(W, [B0,B1], Undefined, Frequent)
if (n != 2) <abort>

/*
* M ap window to the screen
*/
MapWindow(W)

/*
* Draw images using alternate buffers, display every
* 1/10 of a second. Note we draw B1 first so it will
* " pop" on the screen
*/
while animating
{

<draw picture using B1>
DisplayImageBuffers([B1], 100, 0)

<draw picture using B0>
DisplayImageBuffers([B0], 100, 0)

}

/*
* Strip image buffers and leave window with
* contents of last displayed image buffer.
*/
DestroyImageBuffers(W)

-11-

Multi-Buffering Normal Windows

Multi-buffered images are also supported by these requests. The following pseudo-code fragment illus-
trates how to create a a multi-buffered image and cycle through the images to simulate a movie loop:

/*
* Create a normal window
*/
CreateWindow(W, ...)

/*
* Create ’N’ image buffers. Assumeafter display, buffer
* contents are "untouched". Assume we will "frequently"
* update the display. Abort if we don’t get all the buffers.
*/
n = CreateImageBuffers(W, [B0,B1,...,B(N-1)], Untouched, Frequent)
if (n != N) <abort>

/*
* M ap window to screen
*/
MapWindow(W)

/*
* Draw each frame of movie one per buffer
*/
foreach frame

<draw frame using B(i)>

/*
* Cycle through frames, one frame every 1/10 of a second.
*/
while animating
{

foreach frame
DisplayImageBuffers([B(i)], 100, 0)

}

-12-

Stereo Windows

Howstereo windows are supported on a server is implementation dependent.A server may contain special-
ized hardware that allows left and right images to be toggled at field or frame rates. The stereo affect may
only be perceived with the aid of special viewing glasses. Thedisplayof a stereo picture should be inde-
pendent of how often the contents of the picture areupdatedby an application. Double and multi-buffering
of images should be possible regardless of whether the image is displayed normally or in stereo.

To achieve this goal, a simple extension to normal windows is suggested. Stereo windows are just like nor-
mal windows except the displayed image is made up of a left image buffer and a right image buffer. To cre-
ate a stereo window, a client makes the following request:

CreateStereoWindow
parent :WINDOW
w_id : WINDOW
left, right : BUFFER
depth :CARD8
visual :VISUALID or CopyFromParent
x, y : INT16
width, height : INT16
border_width :INT16
value_mask :BITMASK
value_list :LISTofVALUE

(Errors: Alloc, Color, Cursor, Match,
Pixmap, Value, Window)

This request, modeled after theCreateWindow request, adds just two new parameters:left andright. For
stereo, it is essential that one can distinguish whether a draw operation is to occur on the left image or right
image. Whilean internal mode could have been added to achieve this, using two buffer ID’s allows clients
to simultaneously build up the left and right components of a stereo image. These ID’s always refer to (are
an alias for) the left and right image buffers that are currentlydisplayed.

Like normal windows, the window ID is used whenever a window management operation is to be per-
formed. Window queries would also return this window ID (eg: QueryTree) as would most events. Like
the window ID, the left and right buffer ID’s each have their own event mask. They can be set and queried
using theSet/GetBufferAttributes requests.

Using the window ID of a stereo window in a draw request (eg:GetImage) results in pixels that areunde-
fined. Possible semantics are that both left and right images get drawn, or just a single side is operated on
(existing applications will have to be re-written to explicitly use the left and right buffer ID’s in order to
successfully create, fetch, and store stereo images).

Having an explicitCreateStereoWindowrequest is helpful in that a server implementation will know from
the onset whether a stereo window is desired and can return appropriate status to the client if it cannot sup-
port this functionality.

Some hardware may support separate stereo and non-stereo modes, perhaps with different vertical resolu-
tions. For example, the vertical resolution in stereo mode may be half that of non-stereo mode. Selecting
one mode or the other must be done through some means outside of this extension (eg: by providing a sepa-
rate screen for each hardware display mode). The screen attributes (ie: x/y resolution) for a screen that sup-
ports normal windows, may differ from a screen that supports stereo windows; however, all windows,
regardless of type, displayed on the same screen must have the same screen attributes (ie: pixel aspect
ratio).

If a screen that supports stereo windows also supports normal windows, then the images presented to the
left and right eyes for normal windows should be the same (ie: have no stereo offset).

-13-

Single-Buffered Stereo Windows

The following shows how to create and display a single-buffered stereo image:

/*
* Create the stereo window, map it the screen,
* and draw the left and right images
*/
CreateStereoWindow(W, L, R, ...)

MapWindow(W)

<draw picture using L,R>

-14-

Double-Buffering Stereo Windows

Additional image buffers may be added to a stereo window to allow double or multi-buffering of stereo
images. Simplyuse the theCreateImageBuffersrequest. Even numbered buffers (0,2,...) will be left
buffers. Oddnumbered buffers (1,3,...) will be right buffers. Displayablestereo images are formed by con-
secutive left/right pairs of image buffers. For example, (buffer[0],buffer[1]) form the first displayable
stereo image; (buffer[2],buffer[3]) the next; and so on.

TheCreateImageBuffersrequest will only create pairs of left and right image buffers for stereo windows.
By always pairing left and right image buffers together, implementations might be able to perform some
type of optimization. If an odd number of buffers is specified, aValue error is generated. All the rules
mentioned at the start of this proposal still apply to the image buffers supported by a stereo window.

To display a image buffer pair of a multi-buffered stereo image, either the left buffer ID or right buffer ID
may be specified in aDisplayImageBuffersrequest, but not both.

To double-buffer a stereo window:

/*
* Create stereo window and map it to the screen
*/
CreateStereoWindow(W, L, R, ...)

/*
* Create two pairs of image buffers. Assumeafter display,
* buffer contents become "undefined". Assume we will "frequently"
* update the display. Abort if we did get all the buffers.
*/
n = CreateImageBuffers(W, [L0,R0,L1,R1], Undefined, Frequently)
if (n != 4) <abort>

/*
* M ap window to the screen
*/
MapWindow(W)

/*
* Draw images using alternate buffers,
* display every 1/10 of a second.
*/
while animating
{

<draw picture using L1,R1>
DisplayImageBuffers([L1], 100, 0)

<draw picture using L0,R0>
DisplayImageBuffers([L0], 100, 0)

}

-15-

Multi-Buffering Stereo Windows

To cycle throughN stereo images:

/*
* Create stereo window
*/
CreateStereoWindow(W, L, R, ...)

/*
* Create N pairs of image buffers. Assumeafter display,
* buffer contents are "untouched". Assume we will "frequently"
* update the display. Abort if we don’t get all the buffers.
*/
n = CreateImageBuffers(W, [L0,R0,...,L(N-1),R(N-1)], Untouched, Frequently)
if (n != N*2) <abort>

/*
* M ap window to screen
*/
MapWindow(W)

/*
* Draw the left and right halves of each image
*/
foreach stereo image

<draw picture using L(i),R(i)>

/*
* Cycle through images every 1/10 of a second
*/
while animating
{

foreach stereo image
DisplayImageBuffers([L(i)], 100, 0)

}

-16-

Protocol Encoding

The official name of this extension is "Multi-Buffering". Whenthis string passed toQueryExtensionthe
information returned should be interpreted as follows:

major-opcode Specifies the major opcode of this extension. Thefirst byte of each extension request
should specify this value.

first-event Specifies the code that will be returned whenClobberNotify ev ents are generated.

first-error Specifies the code that will be returned whenBuffer errors are generated.

The following sections describe the protocol encoding for this extension.

TYPES

BUFFER_INFO

4 VISUALID visual
2 CARD16 max-buffers
1 CARD8 depth
1 unused

SETofBUFFER_EVENT

#x00008000 Exposure
#x02000000 ClobberNotify
#x04000000 UpdateNotify

EVENTS

ClobberNotify

1 seefirst-event code
1 unused
2 CARD16 sequencenumber
4 BUFFER buffer
1 state

0 Unclobbered
1 PartiallyClobbered
2 FullyClobbered

23 unused

UpdateNotify

1 first-event+1 code
1 unused
2 CARD16 sequencenumber
4 BUFFER buffer
24 unused

ERRORS

Buffer

1 0 Error
1 seefirst-error code
2 CARD16 sequencenumber
4 CARD32 badresource id
2 CARD16 minor-opcode
1 CARD8 major-opcode

-17-

21 unused

-18-

REQUESTS

GetBufferVersion

1 seemajor-opcode major-opcode
1 0 minor-opcode
2 1 request length
→
1 1 Reply
1 unused
2 CARD16 sequencenumber
4 0 reply length
1 CARD8 majorversion number
1 CARD8 minorversion number
22 unused

CreateImageBuffers

1 seemajor-opcode major-opcode
1 1 minor-opcode
2 3+n requestlength
4 WINDOW wid
1 update-action

0 Undefined
1 Background
2 Untouched
3 Copied

1 update-hint
0 Frequent
1 Intermittent
2 Static

2 unused
4n LISTofBUFFER buffer-list
→
1 1 Reply
1 unused
2 CARD16 sequencenumber
4 0 reply length
2 CARD16 number-buffers
22 unused

DestroyImageBuffers

1 seemajor-opcode major-opcode
1 2 minor-opcode
2 2 request length
4 WINDOW wid

DisplayImageBuffers

1 seemajor-opcode major-opcode
1 3 minor-opcode
2 2+n requestlength
2 CARD16 min-delay
2 CARD16 max-delay
4n LISTofBUFFER buffer-list

-19-

SetMultiBufferAttributes

1 seemajor-opcode major-opcode
1 4 minor-opcode
2 3+n requestlength
4 WINDOW wid

4 BITMASK value-mask (has n bits set to 1)
#x00000001 update-hint

4n LISTofVALUE value-list

VALUEs
1 update-hint

0 Frequent
1 Intermittent
2 Static

GetMultiBufferAttributes

1 seemajor-opcode major-opcode
1 5 minor-opcode
2 2 request length
4 WINDOW wid
→
1 1 Reply
1 unused
2 CARD16 sequencenumber
4 n reply length
2 CARD16 displayed-buffer
1 update-action

0 Undefined
1 Background
2 Untouched
3 Copied

1 update-hint
0 Frequent
1 Intermittent
2 Static

1 window-mode
0 Mono
1 Stereo

19 unused
4n LISTofBUFFER buffer list

-20-

SetBufferAttributes

1 seemajor-opcode major-opcode
1 6 minor-opcode
2 3+n requestlength
4 BUFFER buffer

4 BITMASK value-mask (has n bits set to 1)
#x00000001 event-mask

4n LISTofVALUE value-list

VALUEs
4 SETofBUFFER_EVENT event-mask

GetBufferAttributes

1 seemajor-opcode major-opcode
1 7 minor-opcode
2 2 request length
4 BUFFER buffer
→
1 1 Reply
1 unused
2 CARD16 sequencenumber
4 0 reply length
4 WINDOW wid
4 SETofBUFFER_EVENT event-mask
2 CARD16 index
1 side

0 Mono
1 Left
2 Right

13 unused

GetBufferInfo

1 seemajor-opcode major-opcode
1 8 minor-opcode
2 2 request length
4 WINDOW root
→
1 1 Reply
1 unused
2 CARD16 sequencenumber
4 2(n+m) replylength
2 n number BUFFER_INFO in normal-info
2 m number BUFFER_INFO in stereo-info
20 unused
8n LISTofBUFFER_INFO normal-info
8m LISTofBUFFER_INFO stereo-info

-21-

CreateStereoWindow

1 seemajor-opcode major-opcode
1 9 minor-opcode
2 11+n requestlength
3 unused
1 CARD8 depth
4 WINDOW wid
4 WINDOW parent
4 BUFFER left
4 BUFFER right
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
2 class

0 CopyFromParent
1 InputOutput
2 InputOnly

4 VISUALID visual
0 CopyFromParent

4 BITMASK value-mask (has n bits set to 1)
encodings are the same
as for CreateWindow

4n LISTofVALUE value-list
encodings are the same
as for CreateWindow

ClearImageBufferArea

1 seemajor-opcode major-opcode
1 10 minor-opcode
2 5 request length
4 WINDOW buffer
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
3 unused
1 BOOL exposures

