General functions��

Working with options��

reset_option(key)

Reset one option to their default value.

get_option(key[,��default])

Retrieves the value of the specified option.

set_option(key,��value)

Sets the value of the specified option.

option_context(*args)

Context manager to temporarily set options in the with statement context.

Data manipulations and SQL��

melt(frame[,��id_vars,��value_vars,��var_name,�����])

Unpivot a DataFrame from wide format to long format, optionally leaving identifier variables set.

merge(obj,��right[,��how,��on,��left_on,�����])

Merge DataFrame objects with a database-style join.

merge_asof(left,��right[,��on,��left_on,�����])

Perform an asof merge.

get_dummies(data[,��prefix,��prefix_sep,�����])

Convert categorical variable into dummy/indicator variables, also known as one hot encoding.

concat(objs[,��axis,��join,��ignore_index,��sort])

Concatenate pandas-on-Spark objects along a particular axis with optional set logic along the other axes.

sql(query[,��index_col,��args])

Execute a SQL query and return the result as a pandas-on-Spark DataFrame.

broadcast(obj)

Marks a DataFrame as small enough for use in broadcast joins.

Top-level missing data��

isna(obj)

Detect missing values for an array-like object.

isnull(obj)

Detect missing values for an array-like object.

notna(obj)

Detect existing (non-missing) values.

notnull(obj)

Detect existing (non-missing) values.

Top-level dealing with numeric data��

to_numeric(arg[,��errors])

Convert argument to a numeric type.

Top-level dealing with datetimelike data��

to_datetime(arg[,��errors,��format,��unit,�����])

Convert argument to datetime.

date_range([start,��end,��periods,��freq,��tz,�����])

Return a fixed frequency DatetimeIndex.

to_timedelta(arg[,��unit,��errors])

Convert argument to timedelta.

timedelta_range([start,��end,��periods,��freq,�����])

Return a fixed frequency TimedeltaIndex, with day as the default frequency.